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ATTENUATION OF SOUND IN SOFT WALLED CIRCULAR DUCTS

Edward J. Rice

Iewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

SUMMARY

A theory is presented which appears capasble of predicting the
attenuation of broad-band sound in soft walled (low acoustical impe-
dance) circular ducts.

The axially symmetric separable solutions to the linear wave
equation in clyindrical coordinates were cbtained. It was assumed
that the steady velocities and pressure fluctuations were small. The
first ten characteristic function solutions were fit to form a travel-
ing plane pressure wave at the lined duct entrance by means of a
Fourier-Bessel series expansion. The eigenvalues are comblex numbers
due to the finite wall impedance boundary condition.

The present theory, in contrast to the approximate theory wvalid
for hard walls, shows a strong dependence of sound attenuation on
frequency. This dependence occurs through the ratio of the duct
diameter to sound wavelength.

At high frequencies focusing of the sound wave toward the duct
axis occurs. The acoustic energy can remain high, but at the outside
wall, where the energy must be absorbed, the pressure oscillations may
be small.

The theory was used to calculate the noise reduction obtained
with a perforated plate liner on a J-65 engine inlet. The liner de-
sign was based upon an approximete theory valid for very hard walls.
The present theory showed excellent agreement with experimental
measurements and why the design based on approximate theory failed to
provide high noise reduction.

SYMBOLS

A area,.ft2

B; constant (see eq. (5) and (13))

¢ speed of sound, ft/sec

Cp specific heat at constant pressure, Btu/lb /R

D duct diameter, ft

D/A duct diameter to wavelength ratio (see 1 below)

dBmax" maximum possible sound power attenuation for a given 1
and L/D, decibels

E acoustic energy, ft lby/sec
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acoustic energy contribution of J pressure and k axial
velocity modes, ft lbp/sec

~sound frequency, Hz

Bessel function of the first kind, of order n
duct length to diameter ratio

duct length, ft

J mode of acoustic pressure, psi

complex conjugate of P, psi

acoustic pressure, }i} Pj, psi
J

modulus of J complex eigenvalue
gas constant, £t 1b./1b /°R
radial space coordinate, ft

duct radius, ft

temperature, °R

time, sec

acoustic velocity, :E> Vi ft/sec
J

j mode of acoustic velocity, ft/sec
axial space coordinate, ft
liner acoustic impedance, b /ft2/sec

complex eigengalue of J radial characteristic solution
= R.elP]j
(d,j = RJe J)
dimensionless liner acoustical impedance (Z/poC)

Morse's frequency parameter, duct diameter in wavelengths
r o/xC or D/A

argument of j complex eigenvalue
sound wavelength, ft
density, 1b,/ft>

average density, Ibm/ft3



03575 Morse's transmission parameters (ref. 2)

® dimensionless acoustical resistance, Re ()
X dimensionless acoustical reactance, dm ()
w circular frequency, rad/sec

( )* complex conjugate

1. INTRODUCTION

The solution to the linearized acoustical wave equation in ecircu-
lar ducts is well known and the method of applying boundary conditions
to the characteristic solutions to represent a compliceted waveform
entering a soft walled duct is thoroughly established, (refs. 1 and 2).
Due to computetional difficulties, an approximate solution to the duct
wall impedance equation for the first mode of vibration has been made
in the past, (refs. 1, 3, and 4). The resulting solution is an ap-
proximation to the transmission of a plane wave in a circular duct
with a nearly hard wall.

The purpose of this paper is to investigate the complete solution
of the linearized wave equation with associated boundary conditions
such that the solution is valid for ducts with very soft walls (i.e.,
acoustically lined ducts). The solution is specialized to that of a
plane wave entering the duct but could be applied to any axisymmetric
wave form.

The theory was applied to broad-band or random noise in the fol-
lowing way. At each frequency in the broad-band spectrum the random
noise was assumed to enter the duct as a plane traveling pressure
wave. The attenuation of this pressure wave was calculated at each
frequency and compared to that obtained experimentally in the inlet of
& J=-65 turbojet engine. The comparison between experimental and
theoretical sound power attenuation was excellent.

2. THEORY

Differential Equation and Solutions. The equations of motion
for the air in the duct are:

)
5‘% = - V= (pv) cont. )
Dv
PoE = - mom,
()
DI Dp
pCp & =5t energy
P = PRT state

Viscous and heat transfer terms have been neglected. The air
in the duct is assumed to behave as an ideal gas. If it is assumed
that the pressure perturbations are small compared to the average
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pressure and the steady velocities are negligible, equation (1) re-
duces to:

g% = -pOCZV v

3 (2)
Po 5% = =Vp

Equations (2) can be combined to obtain the wave equation,

2

and if the time dependence in pressure is of the form elwt then

v = —i—-vp (4)

P

The solution of equation (3) in cylindrical coordinates with
axial symmetry is:

Pj = BJ-JO(ocJ- ;r;) exp[iu:t-% (O‘J + i‘tj)ﬂ (5)

The subscript J is used in equation (5) since there are an
infinite number of solutions of this form.

The radial eigenvalues ¢. must be determined from the bound-
ary condition at the wall (r & rw) and can be expressed as:
1GJ (6)

The constants Bs must be determined from the initial pressure
wave at the duct entrance (X = 0).

It should be noted that the argument of the Bessel function and
thus the Bessel function itself is a complex nunber. The methods used

for calculation of the complex Bessel function are presented in the
appendix.

CI,'j:Rje

Application of Boundary Conditions. Each solution (eq. (5)) must
satisfy the radial impedance condition at the outer wall:

_(55
: '<er> )

r=rw

Equation (4) is used to obtain the radial veloeity (ij). Equation (7)
can then be expressed as:

Z

_ £ _ iﬁJO(c(, )
eoCn M aleZajs (&)




where

n=R= 3 (9)

The radial eigenvalues o must be determined from equation (8) and
are a function of Q/n ohly. The methods used to determine the oy
are presented in the appendix.

Since the differential equation in pressure (eq. (3)) is linear,
the pressure can be expressed as the summation of individual solutions.
The pressure in the lined duct can then be expressed in a Fourier-
Bessel series of solutions of the form of equation (5):

= . = i . Ns pl-D g, iT.)
P= E Py exp(iwt) z; BJJO(aJ rw) exp[E(cJ + :n'J)X] (10)
J J
For an initial plane traveling pressure wave the pressure must be:
P = exp(iat), (X = 0) (11)

Combining equations (10) and (11), the following equation for the
constants BJ results:

Z)BJJO (xj ;r;) =1 (12)

The radial cgharacteristic functions form.an orthogonal set
between r =0,and r =r (ref. 5). The Bj can thus be deter-~
mined in equation (12), and the result is:

B: = iaf (13)

With equation (13) substituted in equation (10), the pressure any-
where in the lined duct is determined.

The complete solutions for the pressure and radial velocity also
satisfy the radial impedance boundary conditions since:

=7 (14)

Axial Acoustic Energy. The axial intensity can be expressed




I=1/2 Re (P*v. ) (15)
Axial acoustic energy can thusﬁbe determined from:
Jyk

where

iy
w
Ejk=fljde=ﬁ@e A rPlvyg dr (16b)

The subscripts Jjk signify the interaction of the j pressure
mode with the k axial velocity mode. Equation (16a) must be used
since: ‘

Ejxk #0 (3 #%) (17)

In the evaluation of the integral of equation (16b)

r r
rd |o¥ =—\J (o, =} dr

innrs(g + C*)J?(ag)Jo(ak)

Ee¥(aZ - af?)

w

(18)

was used.
Equation (18) was derived from the equation for the "Ortho-

gonality of Characteristics Functions" given in reference 5. Equa-
tion (8) and

[7o(as)])* = 3(ad) (19)

were also used in the derivation of equation (18).
Equations (4), (5), (8), (13), (16b), and (18) yield:

41'-?; (o +iTy) (E+ g*)eXPG%[( gy + o) +i(Ty - TJ‘)]X}

Po™M Qggk(aﬁ - ajz)

where
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Q = (—,r;lli) -1 (21)

and Q¥ is determined from equation (21) by replacing k by J eand
taking the complex conjugate.

The damping and transmission parameters can be determined by sub~-
stituting equation (5) into equation (3). The real and imaginary
parts of the resulting equation can be solved for cj and TJ. The
result is:

1 [ [(RsY R3\*_,(RsY /2y
GJ;TJ = Tz-'é[(ﬁ> cOSs 263 - ﬂ + [(ﬁ) - 2<;-{-ﬁ) cos Zej +]]
(22)

where (+) is used for o; and (-) for t,. From equation (8) it is
seen that Rj and ej gre the modulus ahd argumentof the complex
eigenvalue qs.

The souna power attenuvation can be calculated from

Eexit
dB = 10 logl()(m (23)

where Bexit @nd Egptrgnce are calculated from equation (16a) using
equations %20), (21), and ?22). Before equations (20), (21), and (22)
can be evaluated, the complex eigenvalues «: must be calculated
from the multiple solutions of equation (8).° The method used to eval-
uate the «. is outlined in the appendix.

From e&uation (8) the radial eigenvalues @y are seen to be a
function only of §/n. Equation (13) shows the “B, to be a function
of ¢/n and «; or thus only of ¢/n. The modal’content of the
plane pressure Wave at the lined duct entrance (X = 0) is thus a
function only of ¢/n according to equation (5). The damping and
transmission parameters o; and T3 are seen to be a function of
¢/n through R, and 6;.  But, in addition, 0. and T, contain
n without ¢ explicitly. The exponential of equation fzo) contains
the term expressible as:

8, - -

where 1L is the length of lined duct and D is the diameter.

The variables on which the sound attenuation depends are thus
£/n, n, and L/D or alternately ¢, 1, and L/D.

Several pressure and velocity modes must be considered for soft
walled ducts. The attenuation equation (eq. (23)) thus contains the
Logarithm of the ratio of two complicated summations. Due to this
complication no simplifying truncation of the theory yielding a simple
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equation for attenuation has been obtained.

3. RESULTS AND DISCUSSION

The numerical results which follow were calculated on an IBM 7094
computer. The first ten radial modes were used.

Attenuation Contours and Maximum Attenuation. The sound power
attenuation depends upon four variables: the wall resistance and
reactance, the duct diameter to wave length ratio (1n), and the duct
length to diameter ratio (L/D). Figure 1 presents constant attenu-
ation contours as a function of wall resistance and reactance. The
other varisbles are fixed at 1 =1 and L/D = 3. Also plotted in
figure 1 are the results of reference 1 which can be expressed as:

dB = -17.36(L/D) '(Efi—f??-)_ (25)

The following differences between the approximate theory of
reference 1 and the more complete theory of this paper can be noted.

For a given wall resistance maximum attenuation occurs at nega-
tive wall reactance rather than at the wall tune point (X = 0).

The present theory predicts an absolute maximum sound attenu-
ation at fixed values of 7 and L/D. Decreasing resistance ulti-
mately reduces attenuation for any value of reactance. The approxi-
mate theory predicts local maxima, but for X = O the attenuation
can.be increased indefinitely by reducing resistance. The present -
thjory agrees with the approximate theory for large wall impedance
(¢/n).

It should be noted that figure 1 is not a general attenuation
plot which can be used for liner design. Figure 1 is valid only for
a duct diameter to wavelength ratio (1) of one and L/D = 3. For
other 71 end L/D the impedance for maximum attenuation will move
in the impedance plane, and the peak attenuation will change.

Figure 2 presents the value of the absolute maximum sound atten-
uvetion as a function of duct diasmeter in wavelengths (7). Several
curves of constant L/D are shown. The maximum attenustion
(-dBmax) has been normalized by dividing it by the value of L/D for
each curve., The following should be noted from figure 2. TFor very
small 7 (n =~0.1l) the maximum attenuation is weakly dependent upon
N. Near = 1 the meaximum sttenuation falls rapidly with increas-
ing n(a l?nz). For large 1 maximum attenuation is approximately
inversely proportional to 1.

For n>1 the maximum attenuation is approximately proportional
to L/D. An extrapolation of the larger L/D curves to 7 <1 indi-
cates that for small 1 the attenuation per unit L/D decreases
with L/D.

The locus of the maximum sound attenuation in the wall impedance
plane is shown in figure 3. geveral lines of constant 17 and L/D
are presented. In general the locus for constant L/D shows that
for increasing 1 (or f) the impedance for maximum attenuation moves
to larger wall resistance and more negative reactance, The exception
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is ‘the inflection found in each constant L/D curve. The advent of
this inflection occurs at roughly n = L/D.

The resistance of typical lining materials increases with fre-
quency (see fig. 7). Unfortunately the reactance also increases with
frequency. This trend of reactance with frequency is inverse to that
required for maximum attenuation. Targe sound attenuation can thus be

~obtained only over a limited frequency range for a given wall treat-
ment.

Sound Power Attenuation Contour Breadth in Wall Tmpedance Plane.
Structural considerations may preclude the use of a liner material with
optimum wall impedance. The question then arises. How far removed
from the optimum wall impedance can the liner impedance be and still
result in acceptable sound attenuation? Figures 4 and S are presented
to partially answer this question.

Figure 4(a) represents vertical cuts through the maximum attenu-
ation points of several contour plots like figure 1. Figure 4(a), for
an L/D = 1, was constructed in the following way. For a fixed diam-
eter to wavelength ratio (7) and for the wall reactance of maximum
attenuation, sound attenuations for several resistances on both sides
of the maximum attenuation were calculated. Plots of attenuation
versus resistance were made. These plots provided the resistances for
say 5, 10, 20, ete. dB sound attenuations. These resistances were
then plotted on figure 4(a) for the value of 1n wused. A range of 1
was covered with the unique value of reactance for each 1 which pro-
vides maximum attenuation. Figure 4(b) was generated like figure 4(a)
but with the roles of resistance and reactance interchanged. Fig-
ure 4(b) thus represents horizontal cubs through the maximum attenu-
ation points of several contour plots like figure 1. Flgures 5(a)
and (b) are analogous to 4(a) and (b) but with L/D =

The effect of L/D on the breadth of the sound attenuatlon con-
tours is clear from figures 4 and 5, but numerical examples will
further illustrate the effect. At the largest value of n for which
20 dB reduction can be obteined (n = 1.13 for L/D =1 and
1 = 3.85 for L/D = 5) the breadth of the 10 dB contours were ob-
served, . For L/D =1 the intervals are 0.2 < ¢ < 1.6 and
-1.41 < X < ~0.15. For L/D = 5 they are 1.28 < ¢ < 8.9 and
-6.5 <X <+0.5. The breadth increases (due to an increase in L/D
by a FTactor of 5) are thus 5.4 for resistance and 5.6 for reactance.
The contour breadth is thus seen to increase approximately as L/D.

The benefits possible from using lined partitions in the duct
are now obvious. Increasing L/D by a factor of 5 reduces n by
a factor of 5 for the same L. Reducing 1 increases the maximum
possible sound attenuation (fig. 2). An increase in L/D broadens
the impedance range over which a given sound attenustion can be
obtained. This is caused by the increased liner area as well as the
reduction in 1.

Beaming of Pressure Wave at High Frequency. Radial sound pres-
sure profiles for 1 = 0.1, 1, and 10 for several values of L/D are
shown in figure 6. The wall resistance and reactance were 1.6 and
zero for all curves of figure 6.

At the lined duct entrance (L/D = 0) the pressure wave is a
plane traveling wave of unit amplitude. This implies a uniform
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amplitude and phase at any radius. At L/D = 3 +the phase change

from r =0 %0 0.9 r, is -4.6, -0.8, and +30.5 degrees for n = 0.1,
1, and 10 respectively. For large 1 the pressure near the wall is
seen to lead that at the duct axis. From these phase relationships
and the radial pressure profiles of figure 6 the following is apparent.
For n = 0.1 and 1 the wave is attenuated and progresses down the duct
as nearly a plane wave. For =n = 10 the pressure wave is beamed to-
ward the duct axis. For L/D = 3 and 5 the pressure oscillations at
the duct axis are more than twice that of the original plane wave

(st L/D = 0). At the duct wall the pressure oscillations have been
reduced by a factor of about 10 (or 20 dB). The acoustic power has
been redistributed toward the duct axis. At the wall where it must
be sbsorbed, the sound intensity has been reduced. Thus, sound power
attenuation is small as can be verified from the table of figure 8.

Comparison of Theory and Experimental Results. In order to cal-
culate sound attenuation in & duct, the resistance and reactance of
the lining material must be known. The resistance and reactance fre-
quency dependence (calculated by method of ref. 7) used in the follow-
ing calculations is presented in figure 7. Several resistance curves
are shown since liner resistance varies with sound pressure level in
the duct. The following data were used in the impedance calculations:

1. Steady flow velocity in duet, 350 fps.

2. Liner open area ratio, 0.08

3. Liner face plate thickness, 0.020 inches

4. Liner hole diameter, 0.050 inches

5. Liner back cavity depth, 1 inch
Also included in figure 7 are two extra scales (nl and n5) relating
7(D/A)  to frequency for L/D =1 eand 5 where L = 30 inches.

Experimental sound power attenuation data was obtained with a
lined inlet on a J-65 turbojet engine. The lined duct inside diam-
eter (D) was 30 inches, and the lined length (L) was 30 inches (thus
L/D = 1). The evaluation method of sound power levels is found in
reference 9. The experimental sound power attenuation obtained with
the lined inlet (properties as in figure 7) are shown by the data
points in figure 8(b).

Sound power attenuations (using the present theory) were calcu-
lated for several sound pressure levels and a range of Trequencies.
The experimental apparatus dimensions were used. The results are
shovn in figure 8(a). The theoretical sound power attenuation is
shown by the solid curve in figure 8(b). This curve was cbtained by
using the experimental sound pressure level at several frequencies
and interpolating in figure 8(a)es The agreement with experiment is
seen to be excellent and within the experimental error (24B).

The dashed line of figure 8(b) shows the low frequency end of the
attenuation curve predicted by the approximate theory of reference 1
(see eq. (25) this paper). This curve continues rising with frequency
and would predict about 18 dB sound power reduction at the linear tune
point (4175 Hz). ©No reduction at this frequency was observed experi-
mentally.

The reason for the failure of this lined duct design to provide
high sound attenuation is seen in figures 4(a) and (b). The 130 4B
level resistance and the reactance are plotted as dashed curves with
frequencies noted on the curves. The liner resistance and reactance
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diverge further from the region of high damping with increasing fre-
quency. Above 1,000 hertz both resistance and reactance are in the
low attenuation region.

An example of how & geometry change can effect sound attenuation
is shown in figure 9., The same liner material as in figure 7 was
used. The lined duct length remains at 30 inches, but L/D was
changed to 5 (say by lined partitions). The theoretical sound atten-
uation was calculated for three sound pressure levels. High sound
attenuation is seen to be possible over a wide freguency range. TFor
comparison the 150 dB level sound attenuation curve of figure 8(a) has
been replotted in figure 9. A change from L/D =1 to 5 is seen
to increase the frequency for maximum attenuation from 1000 %o
2300 hertz and to increase the peak from 5.3 to 51 4B.

The 130 dB level resistance and the reactance from figure 7 are
plotted on figure 5(a) and (t). A comparison with figure 4(a) and (b)
shows how a change only in L/D from 1 to 5 has moved the high atten-
uation impedance region.

4. CONCLUDING REMARKS

Comments on Duct Partitioning. Circular ducts have been par-
tioned by the addition of radial lined sections (struts) and circum-
ferential lined sections (rings) to increase the liner area to duct
area ratio. With the proper selection of struts and rings the
smaller resulting tubes can be made nearly square. Morse's approxi-
mate solution (ref. 1) for rectangular cross sections shows that
equation (25) is valid for ‘a square duct with very hard walls if D
is replaced by a side of the square. Thus, in the limit of very hard
walls the sound attenuation in circular and square ducts is the same.
For soft walls the analysis of this paper should give at least qual-
itatively correct results for square ducts.

Comments on Liner Resistance and Sound Power Level. As the in-
itial plane pressure wave progresses down the duct it will be atten-
uated and possibly beamed toward the duct axis (for D/A >1). The
sound pressure level at the liner and thus the liner resistance
(fig. 7) decreases down the duct. This effect could be handled by a
new determination for the B:; of equation (10) at several locations
along the duct. After the sound pressure level at the liner has drop-
ped say 2 dB the characteristic solutions could be refitted to the re-
maining pressure wave (not necessarily a plane wave). This new solu-
tion could be used for a distance and then the refitting be repeated
until the end of the duct is reached.

Approximate solutions could also be divised. The extremes of the
sound power level at the liner, for instance, could be used in an
attempt to bracket the exact solution.

The initial (duct entrance) sound pressure level was used in ob-
taining the theoretical curve (solid curve) of figure 8(b).

S. CONCLUSIONS

A theory that describes the propagation and attenuation of an
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initially plane traveling pressure wave in a circular duct with an
acoustically soft wall has been presented. The first ten character-
istic function solutions were used in a Fourier-Bessel series to fit
the plane traveling wave at the lined duct entrance. The results of
the analysis may be summarized as follows.

1. For a duct diameter to wavelength ratio greater than one the
initial plane wave was found to beam toward the duct axis. This re-
sults in a redistribution of the sound power within the duct. The
sound pressure level at the wall liner, where acoustic energy must be
absorbed, can be greatly reduced, while the sound power level is af-
fected only slightly.

2. The theoretical sound power attenuation was found to agree
well with experimental data. The data was taken with a cylindrical
duct, lined with a perforated plate material, mounted on the inlet of
a J-65 engine. The experimental suppressor was designed on the basis
of an approximate theory valid for hard walls. The results of the
present analysis show the reason that the suppressor design failed
to provide high noise reduction.

3. For a given duct length to diameter ratio and duct diameter
to wave length ratio an absolute maximum sound power attenuation
was found in the liner impedance plane. This maximum was always
found to be at negative wall reactance. With increasing duct diam-
eter to wavelength ratio the meximum attenuation point was found to
move to larger liner resistance and more negative liner reactance.
The maximum sound power attenuation was found to be nearly propor-
tional to L/D and to have a strong frequency dependence through
the ratio of duct diameter to wavelength.

4. The region in the wall impedance plane over which a given
sound power attenusation can be obtained increases approximately in
proportion to L/D.

6. APPENDIX

Calculation of the Bessel Function with Complex Argument. The
calculation of the Bessel function with complex argument was done in
a computer program subroutine. The following calculation methods
were used.

If R<10 or if R < (1 + (26/x))n the infinite series defin-
ition (ref. 5) of the Bessel function was used as:

= 2k )
, +n
(-l)k(éele)
i9 2
T (Re™) = Ki(k + n)!
k=0
or >ﬁ(26)
(_1)k(B)2k+n
Jn(Reie) = TR -|2- 3 E:os(zk + n)6 + i sin(2k + n)e:]
k=0 J
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If R> 10 and R > (1 + (26/x))n, the following asymptotic
expansion (ref. 5) was used:

Jn(Reie) ~ 2_9 {J’n(Reie)c’os[Gn(Reieﬂ - Vn(Reie)sinl:Gn(Reie)]}
V nRe?

(27)
where
G (Rel®) = Rel® - Z.om (28)
<5} k W
- -1) Sy
U, (Rel®) = 1 + (1) Sax L
(2k) 1 (8Re1O)" -
k=1
0
k-1
0 (-1)" "Spx.3 > (29)
Vq(Re™) = o ZE-T
(2k - 1)'(8Relf)
k=1
and
5, = (4n? - 12)(4n® - 3%)(4n® - 58) . . . (4n% - 32)

The series of equation (29) were terminated in two ways: when
the modulus of the kth term of U, (Relf) exceeded the modulus of
the kbR term of Vn(Rele) or when the modulus of the “kth term
of either was less than lO'iO. , .,

Rapid convergence occurs in equation (26) for R << n and in
equation (27) when R >> n. Both equations (26) and (27) were tested
over wide ranges of R, 6, and n. For large n the dividing line
between the two methods is R = (1 + (26/x))n. If R < 10, equa-
tion (26) converges more rapidly for any n.

Double precision arithmetic was used in all cases.

Calculation of Complex Eigenvalues. The complex eigenvalues
must be determined from the solution of equation (8) (derived in
the text and repeated here).

7 _ g_ _ iJTJO(CLj)

= 8
PoCn M ijliajs (8)

where again:

o 163

The method of reference 4 was used in the solution of equation (8)
for large wall impedance.
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Iet
4 i65
2
and

_ix

G—?él
Using equation (6), substituting equation (30) into equation (8), and
then differentiating equation (8) with respect to e, there results:

(F + €@) %g = F (31)

Equation (31) is a first order nonlinear differential equation which
can be solved for F in an infinite series solution in e.
The boundary conditions which must be applied are:
at € =0
6; =0 (all j3)
J (32)

and R; 1is the Jh root of Jl(Rj) =0

or Ry = 0, 3.8317, 7.0156, ete. for j =1, 2, 3, ete.
For small wall 1mpedance let

=1
¢ - . (33)
Substitution of equation (33) into equation (31) yields:
L+e?r) Err-0 (34)
dg
The boundary conditions are:
at £ =0 65 =0 (a1l 3)
(35)
and R; is the J% root of Jo(By) = 0

or Rj 2.4048, 5.5201, 8.6437, etec. for j =1, 2, 3, ete.

%or every mode there is a reglon in the impedance plane where
the series solutions of both equation (31) and equation (34) diverge
(at least on the computer using double precision arithmetic). This
region is around the branch line. The branch line is defined here
as the curve in the liner impedance plane (&/n, X/n) on which two

solutions to equation (8) have the same R but different G(R = Ry

but 6; # 6, ). The critical values of RJ on the branch 11ne are
3.1962, 6.3064, . . . or:

Rj,crit = Jm (36)

In this critical impedance region the method of reference 8, for
solving nonlinear equations, was applied directly to equation (8).
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Figure 1. - Sound power attenuation contours for 7 = 1,
LD =3,
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Figure 2. - Maximum possible sound power attenuation-frequency dependence.
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Figure 3. - Locus of maximum sound power attenuation in the wali impedance plane.
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Figure 4(a). - Sound power attenuation contours at reactance of maximum
attenuation (fig. 3and L/ID =1
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Figure 4(b), - Sound power attenuation contours at resistance ot maximum attenuation (fig. 3) and L/ID = 1.
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Figure 5(a). - Sound power attenuation contours at reac-
tance of maximum attenuation (fig. 3) and L/D =5,
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Figure 5(b}, - Sound power attenuation contours at resistance of maximum attenuation (fig. 3} and L/D = 5,
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